The undecidability of the joint embedding property for finitely-constrained hereditary graph classes

Samuel Braunfeld

University of Maryland, College Park

July 13, 2018

Samuel Braunfeld (UMD, College Park)

Undecdiability of the JEP

July 13, 2018 1 / 15

Atomicity and the JEP

• A permutation class is *atomic* if it cannot be expressed as a union of two proper subclasses.

Lemma

Suppose \mathcal{K} is a permutation class, with no infinite antichain in the containment order. Then \mathcal{K} can be expressed as a finite union of atomic subclasses. Furthermore, the upper growth rate of \mathcal{K} is equal to the maximum upper growth rate among its atomic subclasses.

- We view permutations as structures in a language of two linear orders, and so embeddings correspond to containment.
- A hereditary class of structures C has the *joint embedding property* (*JEP*) if for every A, B ∈ C, there is a C ∈ C embedding both.

Lemma

A permutation class is atomic iff it has the JEP.

• The JEP is equivalent to the existence of a weak universal limit.

Question (Ruškuc, '05 [3])

Is there an algorithm that, given finite set of forbidden permutations, decides whether the corresponding permutation class has the JEP?

- Positive answer in some special cases, such as grid classes [4].
- Positive answer for the stronger property of being a natural class [2].

Theorem (B., '18 [1])

There is no algorithm that, given a finite set of forbidden induced subgraphs, decides whether the corresponding hereditary graph class has the JEP.

- The 2-dimensional nature of permutations seems to be an obstruction to carrying out the argument.
- 3-dimensional permutations? permutation graphs?

- Proof by reduction from the tiling problem.
- A tiling problem consists of
 - A collection of tile-types $\{t_1, \ldots, t_n\}$
 - Constraints of the form "tiles of type t_i cannot be above (or right of) tiles of type t_j "
- The question is whether tiles can be assigned to cover the grid N², respecting the constraints

Theorem (Berger, '66)

There is no algorithm that, given a tiling problem, decides whether it has a solution.

- Construct two graphs: A* representing a grid, and B* representing a suitable collection of tiles.
- Choose a finite set of constraints to ensure that successfully joint embedding A* and B* requires producing a valid tiling of the grid points in A* with the tiles from B*
- Show that if the tiling problem admits a solution, then the chosen class admits a joint embedding procedure.
 - Steps 1 and 2 ensure that the tiling problem can be solved iff we can joint embed two particular graphs.
 - Step 3 ensures that the JEP for the whole class is equivalent to joint embedding for those two graphs.

• We don't work directly with graphs, but in an enriched language.

- Ordinary edges E
- 2 Directed edges \vec{E}
- 3 Colored edges E_x, E_y
- Colors for vertices C_1, \ldots, C_k
- To translate to graphs
 - Break up special edges using colored vertices.
 - 2 Attach decorations to vertices to get rid of colors.
 - 3 Ensure no forbidden subgraphs are created.

Canonical models (1)

- Recall A^* is supposed to represent the grid \mathbb{N}^2 . To construct A^* :
 - **(**) Construct a directed path $p_0 \rightarrow p_1 \rightarrow \ldots$
 - 2 For every pair (p_i, p_j) , add a grid point $g_{i,j}$
 - 3 Add colored edges $g_{i,j}E_xp_i, g_{i,j}E_yp_j$
 - Severy type of vertex (origin, path, grid) gets its own color.

Canonical models (2)

- For the case of graphs, B^* could just be a set of labeled tiles t_1, \ldots, t_n .
- For greater flexibility, *B*^{*} will be a copy of *A*^{*}, but with a full set of tiles attached to each grid point.
- Also, vertex colors in B^* are distinct from A^* .

- We wish to ensure joint embedding A^* and B^* solves the tiling problem.
- A grid point in A^* is "tiled" if it is connected to a tile vertex from B^* .
- We want to force that given a grid point in A*, it is tiled by a tile from B* with the same coordinates.
- This is not a local condition.
- Instead, first force the origin to be tiled, then propagate the tiling.
- Also add constraints enforcing the tiling constraints.

Origin-tiling constraint

Samuel Braunfeld (UMD, College Park)

July 13, 2018 10 / 15

э

Propagation constraints

э

- We would like to force every graph to look like A^* or B^* .
- We cannot enforce "totality" conditions, so must allow for partial structures.
- The key property we need is every grid point has at most one set of coordinates.
- Other constraints include:
 - **(**) Grid points have at most one E_x or E_y -neighbor.
 - 2 Origin vertices have at no \rightarrow -predecessor.
 - **3** Path vertices have at most $1 \rightarrow$ -predecessor.

Reducing from the tiling problem

- Given a tiling problem \mathcal{T} , create the corresponding graph class $\mathcal{G}_{\mathcal{T}}$.
- One direction is easy: If $\mathcal{G}_{\mathcal{T}}$ has the JEP, then can joint embed A^* and B^* , and read off a solution to the tiling problem.
- Now suppose \mathcal{T} has a solution $T : \mathbb{N}^2 \to \{t_1, \dots, t_n\}$. Given $A, B \in \mathcal{G}_{\mathcal{T}}$:
 - Take the disjoint union $A \sqcup B$. (Note there is no uniqueness condition on origins, grids, etc.).
 - **2** If not finished, then a grid origin in A and one in B with a full set of tiles, so add an edge according to T(0,0).
 - If not finished, then need to propagate tiling. As every grid point has well-defined coordinates, we just use T(x, y).
 - Oheck that the new edges don't create any forbidden substructures.
- A key property of graphs is that placing an edge between two vertices has no effect on whether we can place an edge or not between other vertices.
- In contrast, suppose x < x' ∈ A and y ∈ B. If place x' < y, then must place x < y.

Moving to permutations

- The 2-dimensional nature of permutations seems to makes it difficult to represent a grid (in classes other than the class of all permutations).
- In the straightforward representation of an *n* × *n* grid, it is easy to find any permutation of length ≤ *n*.

Question

Is there a permutation class (other than the class of all permutations) that represents arbitrarily large grids such that the neighbor relation is:

- local
- **2** determined only by the presence (not absence) of a pattern

- Samuel Braunfeld, Infinite Limits of Finite-Dimensional Permutation Structures, and their Automorphism Groups: Between Model Theory and Combinatorics, PhD Thesis, Rutgers University, New Brunswick, 2018.
- [2] Mike D Atkinson, Maximillian M Murphy, and Nik Ruškuc, Pattern avoidance classes and subpermutations, The Electronic Journal of Combinatorics 12 (2005), no. 1, 60.
- [3] Nik Ruškuc, *Decidability questions for pattern avoidance classes of permutations*, Third International Conference on Permutation Patterns, Gainesville, Fla, 2005.
- [4] Stephen D Waton, On permutation classes defined by token passing networks, gridding matrices and pictures: three flavours of involvement, University of St Andrews, 2007.